
An adventure in writing an emulator in .NET Core.

$ whoami

Father, Husband
Senior Software Developer
Regular speaker at BSides Cape Town

I dabble in hardware hacking, electronics, retro computing and
making things.

Jack of all trades, serial skill collector and high-functioning hoarder.

 @dale_nunns https://xor.co.za

Dale Nunns

An adventure in writing an emulator in .NET Core.

In the beginning...

A friend and I were talking about
emulators. (Hi Ross 😄)

(As one does)

Me: How hard could it be?

Ross: How do emulators work?

Me: I have a vague idea.

Me: Maybe I should learn more by
writing one.

...

The Learning Curve
Ex

pe
rie

nc
e

Time

How hard could it be?

What is an emulator?

What is an emulator?
“...an emulator is hardware or software that
enables one computer system (called the host) to
behave like another computer system (called the
guest). An emulator typically enables the host
system to run software or use peripheral devices
designed for the guest system.”

Why write an emulator?

Out of curiosity, for fun, to learn..

How does an emulator work?

How does an emulator work?

Get next instruction

Decode
instruction

Perform
instruction in

‘fake’ computer

?!?!?!?!???

Emulator - your ‘fake’ computer...
● Byte array for RAM / ROM / Memory
● Variables for CPU registers
● Switch/IF/Case etc to decode instructions and

run them.
● I/O functions that map to your host computers

I/O for keyboard, sound, graphics etc

Cycle Accuracy
“..the most dominant [SNES] emulators are Nestopia and
Nintendulator, requiring 800MHz and 1.6GHz, respectively, to
attain full speed. The need for speed isn't because the
emulators aren't well optimized: it's because they are a far
more faithful recreation of the original NES hardware in
software.” - Accuracy takes power: one man’s 3GHz quest to
build a perfect SNES emulator*

*https://arstechnica.com/gaming/2011/08/accuracy-takes-power-one-mans-3ghz-quest-to-build-a-perfect-snes-emulator/

https://arstechnica.com/gaming/2011/08/accuracy-takes-power-one-mans-3ghz-quest-to-build-a-perfect-snes-emulator/

SNES Specification
● CPU: 16-bit 65816 (3.58MHz)
● RAM: 128KB (1Mb), 64KB (0.5Mb) Video RAM.
● Graphics: Dedicated graphics processor.
● Colors: 32768 (256 on screen)
● Sprites: 128.
● Sprite Size: 64x64 pixels.
● Resolution: 512x448 pixels.
● Sound: 8-channel 8-bit Sony SPC700 digitized sound.

1.6GHz to emulate 3.58MHz ???

SNES Specification
● CPU: 16-bit 65816 (3.58MHz)
● RAM: 128KB (1Mb), 64KB (0.5Mb) Video RAM.
● Graphics: Dedicated graphics processor.
● Colors: 32768 (256 on screen)
● Sprites: 128.
● Sprite Size: 64x64 pixels.
● Resolution: 512x448 pixels.
● Sound: 8-channel 8-bit Sony SPC700 digitized sound.

0.2793296089385475
 ms to perform 1 clock
cycle

What do you need to know about the
device to write an emulator?

EVERYTHING!!

What do you need to know about the
device to write an emulator?
● You need a thorough understanding of the device you

want to emulate.
● You need to know everything about all the components in

the system.
● How they’re connected together.
● How they work both the documented and undocumented

features.

You need to emulate the bugs.

Pentium FPDIV Bug

The processor might return
incorrect binary floating point
results when dividing a number.

Even if it means it can’t do division properly.

You need to emulate undocumented features.

MOS 6502 has only 151 of the
256 available opcodes
defined.

Leaving 105 that trigger
strange and occasionally
hard-to-predict actions.

Choosing a programming
language.

Your language matters.
● Performance matters.
● System level language
● Low-Level access to hardware
● With precise control over number of

cycles.
● C/C++ or Assembly

Your language doesn’t actually matter.
Well It Depends™

● As long as you’re not emulating anything too
complex/fancy it doesn’t matter.

● All you need is to be able to manipulate bytes
at a bit level.

C# & .NET Core
● I know C# well
● It works on Linux, Windows and MacOS
● C# is close enough to C/C++ that code/structure

can be easily replicated for porting to C/C++
● Good excuse to improve my .NET Core skills

Choosing a machine to emulate.

Choosing a machine to emulate.
● Needs to be a simple architecture

○ Low clock speed
○ No fancy graphics
○ No fancy sound

● Well documented

Time Travel

1977

Telmac 1800 COSMAC VIP

Telmac 1800

RCA 1802 CPU @ 1.76MHz

2 kB RAM, expandable to 4 kB

Cassette tape interface

64×32 pixels display resolution

RCA 1802 CPU @ 1.76MHz

2 KB RAM (Expandable to 4 KB
on board and 32 KB via an
expansion slot)

Cassette tape interface

CDP1861/CDP1864 video display
chip
- 64x32 pixel display resolution

COSMAC VIP

CHIP8
A gaming platform you’ve probably never heard of.

What do they have in common?

CHIP8 Games
There are a number of classic video games ported to CHIP-8, such as Pong,
Arkanoid (breakout), Space Invaders and Tetris.

CHIP8
● Developed by Joseph Weisbecker in the mid 1970’s
● Originally made to allow video games to be more

easily programmed for the Telmac 1800 & COSMAC
VIP computers.

● It’s an interpreted programming language.
● CHIP-8 programs are run on a CHIP-8

virtual machine.

CHIP8 - Virtual Machine - Memory

● First 512 bytes (0x00 - 0x200) was the actual interpreter.
● The uppermost 256 bytes (0xF00-0xFFF) are reserved for

display refresh
● The 96 bytes below that (0xEA0-0xEFF) were reserved

for call stack, internal use, and other variables

● Leaving 3232 bytes for your game.

CHIP8 was most commonly implemented on machines with
4KB of Memory.

CHIP8 - Virtual Machine - Registers
● CHIP-8 has 16 8-bit data registers named from V0 to VF
● VF doubles as a carry flag though and there for should be

avoided
● 16-bit wide address register called I and is often used with

certain opcodes for memory operations

Stack
● The stack is only used to store return addresses when

subroutines are called
● 48 bytes for up to 24 levels of nesting

CHIP8 - Virtual Machine - Timers

● Delay timer: This timer is intended to be used for timing
the events of games. Its value can be set and read.

● Sound timer: This timer is used for sound effects. When its
value is nonzero, a beeping sound is made.

CHIP-8 has two timers. They both count down at 60 hertz,
until they reach 0

Input
● Input is done with a hex keyboard that has 16 keys which

range from 0 to F. The '8', '4', '6', and '2' keys are typically
used for directional input.

CHIP8 - Virtual Machine - Graphics
● CHIP-8 Display resolution is 64×32 pixels, and color is

monochrome
● Graphics are drawn exclusively using sprites.
● Sprites are 8 pixels wide and 1-15 pixels high.
● Sprite pixels are XOR'd with corresponding screen pixels
● The carry flag (VF) is set to 1 if any screen pixels are

flipped from set to unset when a sprite is drawn and set to
0 otherwise. (Can be used for collision detection)

CHIP8 - Virtual Machine - Opcodes
● CHIP-8 has 35 opcodes, which are all two bytes long

(big-endian)

Example Opcode
8XY4 - Adds VY to VX. VF is set to 1 when there's a carry,
and to 0 when there isn't.

80A4

Core CHIP8
My emulator in .NET Core

How legal is it?

IANAL
But it’s been over 40 years

How long did it take to write?
● I could only work 1-2 hours a night (small kids + wife).
● Approximately 8 hours to write emulator core + console UI.
● About 10 hours to debug and get it close to working.
● GTK# + Skia UI - 12 hours and still not finished.
● 18 hours for a basic emulator (we won’t count the non

working UI)
● Slides for this talk took significantly longer than

writing the emulator.

What did I learn?
● I suck at bit-shifting and general bit

manipulation (well I did when I started)
● .NET Core + VS Code is actually a nice dev

environment.
● Console on Windows Suck compared to Linux

(New Windows Terminal might fix that)
● Google Slides isn’t terrible (I hope)

DEMO TIME

